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Multicomponent quantum chemistry allows the quantum mechanical treatment of electrons and
specified protons on the same level. Typically the goal is to identify a self-consistent-field
(SCF) solution that is the global minimum associated with the molecular orbital coefficients of the
underlying Hartree-Fock (HF) or density functional theory (DFT) calculation. To determine whether
the solution is a minimum or a saddle point, herein we derive the stability conditions for multicom-
ponent HF and DFT in the nuclear-electronic orbital (NEO) framework. The gradient is always zero
for an SCF solution, whereas the Hessian must be positive semi-definite for the solution to be a min-
imum rather than a saddle point. The stability matrices for NEO-HF and NEO-DFT have the same
matrix structures, which are identical to the working matrices of their corresponding linear response
time-dependent theories (NEO-TDHF and NEO-TDDFT) but with a different metric. A negative
eigenvalue of the stability matrix is a necessary but not sufficient condition for the corresponding
NEO-TDHF or NEO-TDDFT working equation to have an imaginary eigenvalue solution. Electron-
proton systems could potentially exhibit three types of instabilities: electronic, protonic, and electron-
proton vibronic instabilities. The internal and external stabilities for theories with different constraints
on the spin and spatial orbitals can be analyzed. This stability analysis is a useful tool for charac-
terizing SCF solutions and is helpful when searching for lower-energy solutions. Initial applications
to HCN, HNC, and 2-cyanomalonaldehyde, in conjunction with NEO ASCF calculations, highlight
possible connections between stationary points in nuclear coordinate space for conventional electronic
structure calculations and stationary points in orbital space for NEO calculations. Published by AIP

Publishing. https://doi.org/10.1063/1.5040353

Il. INTRODUCTION

The theoretical development of multicomponent quan-
tum chemistry methods has garnered increased attention in
recent years.'”'® In contrast to the conventional electronic
structure theory, which treats only electrons quantum mechan-
ically, multicomponent quantum chemistry enables the quan-
tum mechanical treatment of more than one type of particle,
such as electrons and protons. In this approach, nuclear quan-
tum effects such as delocalization'® and zero-point energy'!
associated with the quantum nuclei are included directly in a
single quantum chemistry calculation. Moreover, the widely
used Born-Oppenheimer approximation, which treats elec-
trons and nuclei separately, can be avoided for these specified
nuclei. Thus, nonadiabatic processes such as proton-coupled
electron transfer (PCET)!*!> could potentially be described
with this approach.

Two branches of multicomponent quantum chemistry
have been developed and actively investigated: wave function
theory and density functional theory (DFT). The wave function
theory branch! starts with multicomponent Hartree-Fock (HF)
theory, which is based on the product of an electronic and a
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nuclear determinant, and can be systematically improved up to
the exact multicomponent full configuration interaction (CI)
method. The DFT branch? adopts the multicomponent one-
particle densities as basic variables and is in principle exact,
although the (exchange-)correlation functionals are unknown
and need to be approximated.

The nuclear-electronic orbital (NEO) method® is one
of the promising multicomponent quantum chemistry
approaches. It treats electrons and specified key protons quan-
tum mechanically, while treating two or more nuclei classi-
cally to avoid difficulties with translations and rotations. Wave
function-based NEO methods have been extensively studied
in the past two decades, including NEO-HFE; multiconfigu-
rational self-consistent-field (NEO-MCSCF) theory,5 second-
order Moller-Plesset perturbation (NEO-MP2) theory, '* NEO-
CIL> explicitly correlated HF (NEO-XCHF) theory,® and
reduced XCHF (NEO-RXCHF).? Unfortunately, these meth-
ods are unable to accurately describe delocalized proton densi-
ties or relative energies in a computationally tractable manner.
By contrast, Kohn-Sham NEO-DFT”-!%!11:17:18 5 more com-
putationally practical, with the computational cost and scaling
similar to those of conventional electronic DFT. Recent work
has shown that delocalized proton densities and proton affini-
ties can be described accurately with the epc17-1' and epc17-
2! electron-proton correlation functionals, respectively. Fur-
thermore, recently the multicomponent time-dependent DFT

Published by AIP Publishing.
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method within the NEO framework, denoted NEO-TDDFT,
has been developed.'” Because both electrons and protons
can be excited in this formalism, NEO-TDDFT could poten-
tially describe electron-proton vibronic excitations, which are
important in nonadiabatic excited state processes such as
photoinduced PCET. !0

As in conventional electronic structure theory, the con-
verged SCF procedure identifies a stationary point, but this
stationary point may not correspond to the global minimum
with respect to the molecular orbital coefficients. The sta-
tionary point is a minimum only if the corresponding Hes-
sian is positive semi-definite; otherwise the stationary point
corresponds to a saddle point that is considered to be an
instability. Moreover, as in conventional electronic TDDFT,
imaginary eigenvalues may occur in NEO-TDDFT calcula-
tions, indicating the instability of the underlying stationary
SCF solution. The characterization of the nature of the sta-
tionary states found in NEO-HF and NEO-DFT calculations
requires a stability analysis,”!=>® which involves the calcula-
tion of the Hessian within the multicomponent orbital space.
This stability analysis also facilitates the search for a lower-
energy solution and can be extended to higher levels of cor-
related theory.””° Analogous issues related to SCF stabil-
ity, convergence problems, and circumventing SCF solutions
corresponding to saddle points or local minima have been
explored in the context of conventional electronic structure
theory. 232431

In this paper, we investigate the stability conditions for
multicomponent quantum chemistry in the NEO framework.
The stability conditions for NEO-HF and NEO-DFT are
derived in Sec. II. The relationship between negative eigen-
values of the stability matrix and imaginary eigenvalues of the
corresponding linear response time-dependent theory is dis-
cussed in Sec. III. The instabilities with respect to electron
orbital rotation, proton orbital rotation, and coupled electron-
proton orbital rotation are discussed in Sec. IV. The internal
and external stabilities for theories with different spatial and
spin constraints are presented in Sec. V. Examples of stability
analyses for the FHF~ molecule, the conversion between HCN
and HNC, and hydrogen transfer in 2-cyanomalonaldehyde are
presented in Sec. VI. These studies utilize NEO ASCF calcu-
lations>? to identify higher-energy stationary solutions corre-
sponding to local minima. Concluding remarks are provided
in Sec. VIIL.

Il. BASIC THEORY

Both NEO-HF and Kohn-Sham NEO-DFT are based on
a product of two determinants corresponding to electrons and
protons, respectively,

o) = [FE)EP). (1

The determinants are composed of N¢ and N” occupied elec-
tron orbitals |i) and proton orbitals |I), respectively. Through-
out this paper, we use lowercase (uppercase) letters to indicate
electron (proton) orbitals and superscripts e (p) to indicate
quantities related to electrons (protons). We also adopt the
convention that i, j, k, [ denote occupied orbitals, a, b, ¢, d
denote virtual orbitals, and p, g, r, s denote general orbitals.
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Following the procedure in Ref. 21, a small rotation of the
occupied orbitals can be expressed as

i) = liy+ Y. cflay=(1+ " clalayli), 2)
Iy =11y+ " dfiAy =+ dtbibolD),  (3)

where ¢ and d with associated subscripts and superscripts
denote the amplitudes of mixing for electron and proton
orbitals, respectively, a'(a) denote creation (annihilation)
operators for electrons, and bT(b) denote the correspond-
ing operators for protons. Note that the primed orbitals
expressed in Eqgs. (2) and (3) are not normalized. With-
out loss of generality, only rotations mixing virtual orbitals
and occupied orbitals are considered because the mixing
between occupied orbitals can always be rotated back, and the
energy is invariant to the rotations within the occupied orbital
space.

The multicomponent ansatz under the orbital mixing can
be approximated by keeping terms to second order with respect
to the mixing amplitudes ¢ and d,

[Py ~ (1 +Z clala; +ZIAdAbT

a b T
ZZU L CiC aba]a a;

A 3BT il
+3 ZUAB dAdBblbsb’ by

+ ) cldlbibialan)|Wo), )

Note that this choice of orbital rotation is not unique and can
be either unitary or non-unitary. Herein we follow the orbital
mixing procedure in Ref. 21.

A. NEO-HF stability conditions
NEO-HF theory is based on the Hamiltonian

H=T+TP + Ve + VPP + VP 1+ ¢, + 07, 5)
where the terms represent the kinetic energy of the elec-
trons, the kinetic energy of the protons, the electron-electron
Coulomb repulsion, the proton-proton Coulomb repulsion, the
electron-proton Coulomb attraction, the interaction of the elec-
trons with the external potential, and the interaction of the
protons with the external potential, respectively. The energy
change with respect to the orbital rotation is

RSALLS
AR,

_ (WolH|¥o)
(Wo|Po)

(6)

Evaluating the above expression, the first-order energy change
with respect to ¢ and d is

AED = Zm cI(¥ol(H - E)a}a;|Wo) + cc
i DBty v, )

where cc denotes the complex conjugate and E is the energy
of the system before rotation [i.e., the second term of Eq. (6)].
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When an SCF solution is obtained, this first-order energy
change is zero due to Brillouin’s theorem for NEO-HF,
which is briefly proven in the supplementary material. The
second-order energy change is

AE® = 22 Sl (ol (H — E)ajajaail¥o) + ce

+3 ZUAB d}d®(Wy|(H — E)bjbybby|%o) + cc
+ ) dN Wl (H = E)bibrajai¥o) +cc
s D) (Bolbiby (H = E)blbi %)

+ ]y (Wolbbs(H — E)ajailWo)

+ ZW o) d}(¥olalay (H - E)b by W) ®)

ci(ch) (Polajap(H — E)afa; %)

It can be written in the matrix form as

A® B¢ T* R*|[C
BA R T ||C*
TT RT AP BP || D
RT TF BP* AP* || D*

AE® = %[C"' c"pfD"]

1
EuT Mu, 9)

with the matrix elements defined as

Cia = ¢4, (10)
Dy = df, (11)
AS iy = (Wola] aq(H - Eo)ajaj|¥o), (12)
Bl = = (Yola] aqd, Tap(H — Eo)|¥o), (13)
AfA g = (Polbj ba(H — Eo)byby|Wo), (14)
B, 1 = (¥olbbab}b(H — Eo)|¥o), (15)
Riags = (Wol(H — Eo)byb,ajai o), (16)
Tiags = (Polb}bp(H — Eo)aja;|¥o). (17)

The matrix M is the stability matrix, or the Hessian. It
is a Hermitian matrix and therefore has only real eigenvalues.
Evaluation of the matrix elements with the Hamiltonian in
Eq. (5) using canonical SCF orbitals gives

zan = 0;j0ap(&q — &) +{ajllib), (18)
Bi, j» = {abllij), (19)
AIA 15 = O17648(€a — &1) + (AJ||IB), (20)
B}, ;5 = (ABIIL)), 1)
Riq = —(iJ|aB), (22)
Tiap = —(iBlaJ), (23)

where ¢ is the Kronecker delta and the &’s with associated
subscripts are the NEO-HF orbital energies. For both electron
and proton orbitals,

(pqllrs) = {pqlrs) — {pqlsr) (24)
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and

¢, (X, (X" (X)hs(X")

[r—r’|

{pqlrs) = /dxdx’ , (25)
where x is the combined variable of spatial and spin coor-
dinates (r,o) and the ¢’s with associated subscripts are the
NEO-HF spin orbitals. Note that the stability matrix M in
Eq. (9) is the same as the NEO-TDHF matrix, although NEO-
TDHF has a non-identity metric in its working equation.'?
Also note that if the matrix elements are evaluated with non-
canonical orbitals, the elements in the two A matrices must
be modified to be Ae = (lofs, (alb)fe +{ajl|ib) and AIA JB

= (JII) (AIB) + (AJ||IB) wherefe and f? are the Fock
matrices for the electrons and protons, respectively. However,
the form of the elements in the other submatrices remains the
same for non-canonical orbitals.

An SCF solution is stable if AE® is never negative for
any orbital rotation [i.e., any trial vector u in Eq. (9)]. This
requirement is equivalent to the condition that the stability
matrix M always has non-negative eigenvalues, or in other
words, M is positive semi-definite. The detailed derivations of
these equations are provided in the supplementary material.

B. NEO-DFT stability conditions
In NEO-DFT, the energy of a system can be expressed as

E[p¢, p"]1 = E°[p®; pP1+ EP[p; p°]
—J[pc, pP1 - E[p®, pP], (26)
E[p pP1 =T p 1+ T*p° 1+ Eflp+ Ve, [p€]
+JP[p°, pP1+ EL[p, pP1, (27
EP[pPp¢] = T) [pP] + P[] + EX.[pP] + Vi, [07]
+JP[p, pP | + EF [p©, p"]. (28)

Here the electronic energy E° is the same as that of regular
DFT except for the addition of the mean-field electron-proton
Coulomb energy J°, where both the electrons and the quantum
protons are represented by densities, and the electron-proton
correlation energy E.”. The electron-proton Coulomb energy
J and the electron-proton correlation energy E.’ are sub-
tracted in the total energy expression to eliminate double
counting.

Under the orbital rotations in Egs. (2) and (3), the changes
in the non-interacting kinetic energy can be evaluated in a
similar manner as for NEO-HF. The changes in the rest of the
terms explicitly depend on the changes of the densities, which
can be evaluated with

o HPWIEY (]t W)

S T T S TAT R S
_ (B PPOIPE)  (¥ol ()] o)

R T T S CA TR S

where p° and p” are the density operators for electrons and pro-
tons, respectively. For a specific term V[p°, p”] in the energy
expression given by Egs. (26)—(28), the change in V, up to
second order, is
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AV = /dr{V[pe(r)+Ape(r), P’ () +ApP(r)]
= VIpt(r), p”(r)]}

/l‘[ 3o Apf(r) +

1 82V
+ [drdr’ [z ——M
/ [2 0pf(r)6 pe(r’)

LoV
26 @3P ()

P A gy g G1)
5 o) '

The first-order change in the total energy is
AEW = 3 clfsvcer Yy diffvee, (D)

where f¢ (f7) is the DFT Fock operator for electrons (protons)
related to the energy expression E¢ (E?). These first-order
terms vanish when an SCF solution is achieved because the
solutions of the Hermitian Fock operator are orthogonal. The
second-order changes can be cast into the same matrix form
as Eq. (9), but with slightly modified definitions of the matrix
elements,

5V
——A
5P (D) ()]

Ap“(r)Ap‘(r’)

AP (DA ()

M (EL+ED)
Al ip = Oij0an(€a — €0) + (ajlib) + <ajle—5pellb>,
(33)
6% (ES. +E)
B, ;, = (ablij) + <ab|Tlij>, (34)
6X(Ev. + E”)
Ay 15 = O170aB(ea — 1) +(AJ|IB) + <AJ|WUB>,
(35)
62 (EL. + EP)
B}, ;5 = (ABILJ) + (ABIWIU}, (36)
2P
Ria.qp = ~(iJ1aB) + (i < eépp laB), (37
2 <P
Tiayp = ~(iBlaJ) + (iB| - eapp laJ), (38)

where the integral associated with a given (exchange-)
correlation kernel K is defined as

(pq|Klrs) = / dxdx’ ¢, (x)¢, (X )K (xx")$-(X)¢s(X'). (39)

Therefore, the NEO-DFT stability matrix M is the same as the
previously derived NEO-TDDFT matrix, but NEO-TDDFT
has a non-identity metric in its working equation.'”> A NEO-
DFT solution is stable when the stability matrix M is positive
semi-definite. The detailed derivations of these equations are
provided in the supplementary material.

Ill. CONNECTION OF STABILITY ANALYSIS
TO NEO-TDHF AND NEO-TDDFT
IMAGINARY EIGENVALUES

In this section, we discuss the connection between
the NEO-HF stability analysis and NEO-TDHF, with the
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understanding that an analogous connection between the NEO-
DFT stability analysis and NEO-TDDFT also exists. An imag-
inary eigenvalue within NEO-TDHEF theory is direct evidence
of the instability of an underlying SCF solution. Following
the same logic as Thouless,* this statement can be proven
by contradiction. Assume NEO-TDHF has at least one imagi-
nary eigenvalue, but the underlying NEO-HF solution is stable.
Suppose one NEO-TDHEF root with the imaginary eigenvalue
E, satisfies

A° B T* R*]rx¢ I 0 0 07[X¢
B A R T ||Y¢ _p |0 L0 0y,
T RT AP BP [[X,| 70 0 I o |[X,)
RT T BP* AP*|LY), 0 0 0 -IJ]|Y,
(40)

where X and Y represent changes in the density matrices.'?

Multiplying by [X¢ Y¢' X2 Y”'] on the left of both sides
gives

Ae Be T* R* X;

BEA“R T ||Y¢

TT RT AP BP ||X)

RT T BP" AP |Y)

X< v Xy v

¥ t i i
= E,(XS X - YO Y+ X0 XD - YD YD), 41)

Because the stability matrix is Hermitian, the left-hand side of
the equation is real. Because E,, is imaginary, the real num-
ber (X¢'X¢ - YO'Y¢ + X?' X2 - Y'Y”) must be zero and
both sides of the equation are zero. Since we have assumed
that the NEO-HF solution is stable and therefore has non-
negative eigenvalues, according to the variation principle, the
vector that yields expectation value zero is an eigenvector with
eigenvalue zero,

A B* T* R* |x¢ ¢ 100 017[X¢
BEA“R T |[|Y¢ Y¢ 0-100]||Y¢
R AP B? ||X2| "0 x?|=%0 0 1 0||Xx?
RT TF BP* AP* || Y/ Y! 00 0-I]Y,

As a consequence, E,, must be zero and real, which contradicts
the assumption that it is imaginary. Therefore, an imaginary
eigenvalue in NEO-TDHF is a sufficient condition for the
instability of an underlying NEO-HF solution.

However, an unstable SCF solution with a negative eigen-
value for the Hessian does not necessarily lead to an imaginary
eigenvalue in NEO-TDHF theory. A simple example is to

= A = ; ? and all other submatrices are

0. In this case, the stability matrix has a negative eigenvalue
—1, but the NEO-TDHF working equation has only real eigen-
value solutions of +1 and +3. We will also present a practical
example of this situation for a molecular system in Sec. VL.

assume that A®

IV. ELECTRONIC, PROTONIC,
AND VIBRONIC INSTABILITIES

If we set the proton orbital rotation to be zero (i.e.,
D = D* = 0) and only allow the electron orbitals to vary, the
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second-order energy change reduces to

A® B® HC

AE® = %[CT CT] |:Be* A ||

] = lu"TM"ue. (43)
2
This form is the same as that of the second-order energy change
in pure electronic HF or DFT,?!:> although the proton quanti-
zation impacts the electronic orbitals in the NEO framework.
Moreover, in NEO-DFT, as shown in Egs. (33) and (34), the
second derivative of the electron-proton correlation functional
will contribute to the A® and B€ blocks. If the electronic matrix
ME is unstable with a negative eigenvalue, the full NEO matrix
M must be unstable, which we define to be an electronic
instability. Similarly, we define a protonic instability when the
AP BP
BP* AP
When there is no electronic or protonic instability, the
NEO solution is still not guaranteed to be stable because the
matrices R and T that couple the electron and proton parts can
lead to instabilities. In those cases, the system will be stable
with respect to both pure electron orbital rotations and pure
proton orbital rotations, but it is unstable with respect to cou-
pled electron-proton orbital rotations, which is defined to be an
electron-proton vibronic instability. Although mathematically
well-defined, we have not yet observed this type of vibronic
instability in practice.

submatrix ] has a negative eigenvalue.

V. STABILITY THEORY WITH SPIN
AND SPATIAL CONSTRAINTS

Analogous to conventional electronic HF theory, NEO-
HF can be classified into generalized NEO-HF (NEO-GHF)
with the allowance of mixed-spin orbitals, unrestricted

J. Chem. Phys. 149, 084105 (2018)

NEO-HF (NEO-UHF) with pure-spin orbitals but not neces-
sarily the same set of spatial orbitals for different spins, and
restricted NEO-HF (NEO-RHF) with the same set of spatial
orbitals shared by different spins. Note that while NEO-GHF
has never been implemented, the derivation of the stability
analysis in Sec. II is general and also applies to NEO-GHF.
Additionally, because NEO treats more than one type of par-
ticle quantum mechanically, it is possible to treat one type of
particle, such as electrons, with RHF, while treating the other
type of particle, such as protons, with UHF. Practical NEO cal-
culations often utilize this mixed treatment, which is denoted
as NEO-MHF in this section. Furthermore, for each type of
theory, the orbitals may or may not be constrained to be real.
The relationships among these methods are depicted schemat-
ically in Fig. 1. Following the work by Seeger and Pople,>* we
will discuss the stability conditions for real and complex NEO-
GHEF, NEO-UHF, NEO-RHF, and NEO-MHF. The results are
summarized in the main paper, and the detailed derivations are
given in the supplementary material. The stability conditions
for the various types of NEO-DFT are similar, and we will not
discuss them separately.

A. Complex NEO-GHF

For the most general complex NEO-GHF case, the sta-
bility can be evaluated by directly diagonalizing the stability
matrix M in Eq. (9).

B. Real NEO-GHF

For the real NEO-GHF case, the stability matrix M is real
and symmetric, and the second-order energy change can be
rewritten as

A* B* T RJ][C
1 BE A° R T||C
2 — 2 et T nt T
AE? = [CTCTDTD g g1 e pel|p
RT 1T BP AP||D*
1 1 A*+B¢ T+R |[[L1C+C*
L —crech —@t+Dn || D T Fere)
202 V2 T"+R" AP+BP|| (D +D%
1 . 1 A*-B* T-R |[Lc-cC
+l[—<c'—CT> —(D*—D%] pe-e)
2[V2 V2 T'-R" AP-BP||5(D-D)
1 1
= EVJ{NIVI + EV;Nsz. (44)

The vector v; is always real, and therefore the correspond-
ing matrix Ny characterizes the internal stability within real
NEO-GHF. When Nj is not positive semi-definite, there is an
instability within the real NEO-GHF space. The vector v, is
always imaginary, and the corresponding matrix N, character-
izes the external stability with respect to complex NEO-GHF.
When Nj is not positive semi-definite, a lower energy can be
achieved by allowing the orbitals to be complex. Furthermore,

T =R and TT = RT when the orbitals are real, and therefore
the electron and proton sub-blocks in N3 are decoupled, with
1o

1 .
—viNpvy = =v%

I b
V2 SVa N3vs + 5 DINDVY. (45)

2 "2
The matrices N; and N‘z’ characterize external electronic

and protonic stabilities, respectively, with respect to complex
NEO-GHE.
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Real NEO-RHF

N

NEO-UHF Complex NEO-RHF

_)\ /

Complex NEO-UHF

/

Complex NEO-GHF

Real NEO-MHF
- RN

Complex NEO- MHF Re

“—’v

,\'

Real NEO-GHF

/

FIG. 1. Schematic depiction of spatial and spin constraints in NEO-HF the-
ory, starting from the maximum constraints at the top and the most general
case at the bottom. The solid black lines correspond to the same relation-
ships as found in conventional electronic structure theory,?* while the dashed
lines indicate new relationships arising from the possibility of MHF. Note that
arrows indicate only relationships between adjacent levels.

C. Complex NEO-UHF

For NEO-UHEF, the orbital rotations can be classified as
spin-conserved (SC) rotations, which mix orbitals with the
same spins, and spin-flip (SF) rotations, which mix orbitals
with different spins. For the complex NEO-UHF case, the SC
and SF parts can be decoupled for each sub-block of the sta-
bility matrix M, and the second-order energy change can be
written as

1
PT ngP
2uSFMSF SF*

(46)

1
€
u M FuSF +

1
AE? = —ul M +
2“ scusc 2

The SC matrix couples electron and protons, whereas the
SF matrices only contain either pure electron or pure proton
sub-blocks. This distinction arises because the SF coupling is
non-zero only in the Fock exchange kernel or non-collinear
density functional kernels,>* but there are no interactions of
these types between electrons and protons. The SC matrix Mgc
characterizes the internal stability within complex NEO-UHF,
whereas the SF matrices Mgy, and MpF characterize the exter-
nal stability with respect to complex NEO-GHF, which we
refer to as SF stability.

D. Real NEO-UHF

For the real NEO-UHF case, the stability matrices can
be obtained from those of complex NEO-UHF with the same
technique as used in Eq. (44). The SC matrix Ny sc charac-
terizes the internal stability within real NEO-UHF. The SF
matrices N‘l’ g and N1 gp Characterize the external stability
with respect to real NEO-GHF. The SC matrices Ng,sc and
le),sc characterize the external stability with respect to com-

plex NEO-UHF. The SF matrices Nj ¢ and N2 o Characterize
the external stability with respect to complex NEO-GHF.

E. Complex NEO-RHF

The complex NEO-RHF case, in which both electrons and
protons are treated as closed-shell systems, is rarely used for
molecular systems because proton orbitals are highly localized
compared to electronic orbitals, and the Coulomb repulsion
energy would be extremely high if two protons formed a pair
and occupied the same spatial orbital. Nevertheless, for com-
pleteness, we still analyze its stability conditions from a purely
mathematical perspective. For the complex NEO-RHF case,
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the spatial variations for @ and S electrons and protons are
required to be the same, and therefore we define the new
quantities

'c \}E(CW +Cpp)s (47)
’C= JE — Cgp)s (48)
'D JE(DW +Dpgp), (49)
D = %(Dm — Dgp). (50)

In this case, !C (D) corresponds to a rotation of the elec-
tron (proton) orbitals within the complex NEO-RHF space,
while 3C (®D) corresponds to a rotation of the electron (proton)
orbitals outside the complex NEO-RHF space. In other words,
1C (D) denotes singlet rotations, while 3C (*D) denotes triplet
rotations. As a consequence, the SC stability matrix Mgc
factorizes into a singlet one (\M) and a triplet one (*M). Fur-
thermore, the electron part (®M®) and proton part MP) do not
couple in the triplet matrix. The singlet matrix 'M character-
izes the internal stability within complex NEO-RHF, while the
triplet matrices 3M¢ and 3MP characterize the external stabil-
ity with respect to complex NEO-UHF. Furthermore, the same
SF stability as defined for complex NEO-UHF with respect to
complex NEO-GHEF also applies here.

F. Real NEO-RHF

For the real NEO-RHF case, the same technique as used
in Eq. (44) can be applied to the complex NEO-RHF matri-
ces to obtain the stability matrices. Starting from M, the
internal stability within real NEO-RHF is characterized by
the first singlet matrix !Ny, and the external stability with
respect to complex NEO-RHF is characterized by the sec-
ond singlet matrix 'N,. The same technique can be applied
to the triplet matrix *M, and the external stability with respect
to real NEO-UHF (or complex NEO-UHF) is characterized
by the triplet matrix 3Ny (or 3N3) Again, the electron and
proton parts decouple for all matrices except the matrix 1Nj.
Analogous to real NEO-UHF, SF stability matrices can be
defined to characterize external stabilities with respect to real
and complex NEO-GHEF, as discussed in the supplementary
material.

G. Complex NEO-MHF

For complex NEO-MHEF, in which electrons are con-
strained to be closed-shell singlet while protons are assumed
to be all high-spin (i.e., each proton occupies a different spatial
orbital), the singlet and triplet quantities are defined for elec-
trons only. The singlet electronic part couples to the proton
rotation and gives rise to a matrix M, while the triplet elec-
tronic part does not couple to the proton rotation and is denoted
bM. Therefore, the internal stability within NEO-MHF is char-
acterized by the coupled matrix ®M, whereas the external
stability with respect to complex NEO-UHF is characterized
by the pure electronic M. Similar to complex NEO-RHF, the
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SF stability with respect to complex NEO-GHF also applies
here.

H. Real NEO-MHF

For the real NEO-MHF case, the same technique as given
by Eq. (44) can be applied to the complex NEO-MHF sta-
bility matrices, as described in the supplementary material.
For the remainder of this paper, we will assume that NEO-HF
corresponds to real NEO-MHF for notational simplicity.

VI. STABILITY ANALYSIS FOR
MOLECULAR SYSTEMS

In this section, we present some examples of insta-
bilities from NEO-DFT calculations on molecular systems.
Our implementation for these molecules, which have one
quantum proton, includes only the SC block for the proton
because the SF block is not of interest. First we investigated
the FHF~ molecule, where the proton and all electrons are
treated quantum mechanically. The geometry was determined
from a geometry optimization at the conventional electronic
DFT/B3LYP level with the def2-QZVP electronic basis set.
For the NEO calculations, the cc-pVDZ electronic basis set
and the 8s8p8d nuclear basis set'® were used. Although a
larger electronic basis set with diffuse functions may improve
the quantitative accuracy, this basis set is sufficient for illus-
trative purposes in the context of the NEO-DFT stability
analysis. The electronic and nuclear basis function centers
associated with the quantum hydrogen were placed at the mid-
point between the two fluorine atoms, which were separated
by 2.30 A.

For the epcl7-1 and epcl7-2 functionals, the FHF~
molecule exhibits an instability in the SCF solutions with
energies —199.791 a.u. and —199.757 a.u., respectively. By
contrast, the lowest-energy SCF solutions found for epcl7-
1 and epcl7-2 correspond to energies —200.260 a.u. and
—200.235 a.u., respectively. For each of the higher-energy
solutions, the NEO-DFT SCF equations are satisfied, and
therefore the gradient in the orbital space is zero (i.e., they
are stationary points). The instability indicates that the higher-
energy solutions correspond to saddle points rather than local
minima in the orbital space. Further investigation suggests

that they are electronically stable but not protonically stable
e €

A
Be* A€* yields

all positive eigenvalues, while diagonalization of the subma-
AP BP

BP® AP
higher-energy solutions correspond to internal NEO-HF insta-
bilities (i.e., within the set of solutions with closed-shell RHF
electrons and a single proton). Analysis of the proton den-
sity, in conjunction with the extremely high energy, suggests
that these solutions do not correspond to excited states of
interest.

Despite the instabilities identified in the SCF solutions,
the corresponding NEO-TDDFT working equations were
found to have all real eigenvalue solutions. This exam-
ple illustrates that an instability of the SCF solution does

because diagonalization of the submatrix

trix [ ] yields negative eigenvalues. Moreover, both
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not necessarily imply imaginary eigenvalues for the NEO-
TDDFT working equation. Additionally, we have also been
able to find examples of the more common case, in which
negative eigenvalues of the stability matrix and imaginary
eigenvalues of the NEO-TDDFT working equation both exist
for the HCN molecule (see the supplementary material for
details). Note that the higher-energy SCF solutions discussed
above are not necessarily physically meaningful and only serve
an illustrative purpose. However, in some cases, such as the
conversion between HCN and HNC and the hydrogen transfer
in 2-cyanomalonaldehyde presented below, the higher-energy
solutions are physically meaningful.

We also investigated the two isomers HCN and HNC,
where again the proton and all electrons are treated quantum
mechanically in the NEO calculations. The schematic picture
of the two isomers is shown in Fig. 2. Geometry optimizations
were performed at the conventional electronic DFT/B3LYP
level with the def2-QZVP electronic basis set for both HCN
and HNC, and the resulting C-N bond lengths were averaged
for a final C-N distance of 1.155 A. Then geometry optimiza-
tions were performed for HCN and HNC to determine the
location of the H atom with this fixed C-N distance. Elec-
tronic and nuclear basis function centers associated with the
quantum hydrogen were placed at these two positions: one set
of basis functions was placed at a distance of 0.996 A from
the nitrogen atom and another set was placed at a distance of
1.066 A from the carbon atom. NEO calculations using the
cc-pVDZ electronic basis set and the 8s8p8d nuclear basis set
were converged to both the HCN and HNC solutions by start-
ing with an initial guess localized on one side or the other.
This type of calculation may be described as a NEO ASCF
calculation.

For the epcl7-1 and epcl7-2 functionals, the stability
matrices for both the HCN and HNC solutions have only posi-
tive eigenvalues, indicating that they are minima in the orbital
space. The total energy of HNC is 0.025 a.u. higher than
the total energy of HCN for both the epcl7-1 and epcl7-2
functionals. This energy difference is consistent with the
energy difference between the isomers HNC and HCN in
conventional electronic DFT. It is also similar to the energy
difference of 0.026 a.u. obtained when the hydrogen nucleus
is treated quantum mechanically with a three-dimensional

7

\
/

|

\ /
v

FIG. 2. Schematic picture of the HCN and HNC molecules. One set of elec-
tron and proton basis functions for hydrogen is positioned at each end of the
molecule, as depicted by the solid and dashed oblong shapes.
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Fourier grid Hamiltonian method?>-*¢ at the B3LYP/cc-pVDZ
level of theory. Thus, the HNC solution is a local minimum
in the orbital space, while the HCN solution is presumed to
be the global minimum because a lower-energy solution was
not found. As expected, for both SCF solutions, the NEO-
TDDFT working equations yield real eigenvalue solutions.
This example of HNC and HCN isomers can be viewed as
a special case of an asymmetric double well potential for the
hydrogen with two well-separated minima connected by a high
barrier.

A more typical example of an asymmetric double-well
proton transfer system is 2-cyanomalonaldehyde, where the
proton transfers between the two oxygen atoms (Fig. 3). In
this case, the transferring proton and all electrons are treated
quantum mechanically in the NEO calculations. For illus-
trative purposes, we utilized a geometry for malonaldehyde
obtained previously®’ by averaging the reactant and product
geometries that were optimized at the MP2/6-31G(d,p) level.
Starting with this geometry for malonaldehyde, the molecu-
lar symmetry was broken by replacing a hydrogen with a CN
group, followed by optimizing only the coordinates of the CN
group at the B3LYP/6-314+G(d,p) level. The NEO calculations
used two electronic and nuclear basis function centers for the
quantum hydrogen, corresponding to the minima of the left
and right wells, respectively, of the asymmetric double well
proton transfer potential. The positions of these basis function
centers were determined by optimizing the hydrogen on the left
or right oxygen at the conventional DFT/B3LYP/6-31+G(d,p)
level. The cc-pVQZ electronic basis set and 8s8p8d nuclear
basis set were used for each basis function center associated
with the quantum proton, and the cc-pVDZ electronic basis set
was used for the other nuclei. The stationary solutions localized
in the left well and the right well were obtained by starting with

e° © @ o
P Q_9
J t ‘. ' j ‘.

NB (1.6) kcal/mol

8.3 kcal/mol

2.1 kecal/mol

FIG. 3. The upper part shows the structures for 2-cyanomalonaldehyde
obtained as described in the text, where all nuclei except the transferring
hydrogen are fixed to an average reactant/product geometry. The lower part
shows the one-dimensional slice of the proton potential energy surface along
the proton transfer axis, which is defined by the line connecting the optimized
positions of the transferring hydrogen on each oxygen. The lowest two pro-
ton vibrational energy levels and the corresponding one-dimensional slices of
the proton vibrational wave functions are also depicted. The energies corre-
sponding to the barrier height, difference in minima, and splitting between the
lowest two vibrational energy levels computed with the Fourier grid Hamil-
tonian method are given, and the NEO-DFT epc17-2 energy level splitting is
given in parentheses. The coordinates of the two structures shown are provided
in the supplementary material.

J. Chem. Phys. 149, 084105 (2018)

an initial guess localized on one side or the other, correspond-
ing to a NEO ASCEF calculation for the higher-energy solution.
As a reference, the hydrogen vibrational wave functions and
energy levels were obtained using a three-dimensional Fourier
grid Hamiltonian method3>-*¢ at the DFT/B3LYP/6-31+G(d,p)
level of theory for the fixed coordinates of the other nuclei.

For the epcl7-1 and epcl7-2 functionals, the stability
matrices for both localized solutions have only positive eigen-
values, indicating that they are minima in the NEO orbital
space. The epcl7-2 solution localized in the right well is
575 cm™! (1.64 kcal/mol) higher in energy than the solution
localized in the left well. This energy splitting is almost iden-
tical to the grid-based reference value, with a difference of
only 48 cm™! (0.14 kcal/mol). This splitting is also similar to
the energy difference of the two minimum energy geometries
obtained by conventional DFT, suggesting that the zero-point
energies associated with the proton in each well are very
similar. Furthermore, NEO-TDDFT calculations starting from
each of the two localized NEO-DFT solutions give only real
eigenvalues that correspond to transitions to higher proton
vibrational excited states. These excited vibrational states are
predominantly localized within the same well as the initial
reference and agree reasonably well with the grid-based ref-
erence values for the lowest five vibrational states, as given in
the supplementary material. Delocalized solutions with even
higher energies are more challenging to obtain and will be
investigated in the future.

In conventional electronic DFT, HCN and HNC, as
well as the two proton positions in 2-cyanomalonaldehyde,
correspond to two different isomers that are both minima in
the nuclear coordinate space. In NEO-DFT, where specified
protons are treated quantum mechanically on the same level
as the electrons, all of these isomers correspond to minima
in the electron/proton orbital space. The mathematical rela-
tionship between stationary points in nuclear coordinate space
for conventional electronic DFT and orbital space for NEO-
DFT is not clear. However, these two examples illustrate that
in some cases, a stationary point in orbital space of a NEO-
DFT calculation corresponds to a stationary point in nuclear
coordinate space of a conventional electronic DFT calculation.
Moreover, in these cases, the stationary points from NEO-DFT
correspond to a physically meaningful form of the molecule.

VIl. CONCLUSIONS

We have derived the stability conditions for the NEO-
HF and NEO-DFT methods. If the stability matrix is positive
semi-definite, the solution is stable and corresponds to either
the global minimum or a local minimum, whereas otherwise it
is a saddle point within the orbital space. Internal and external
stability matrices for complex and real NEO-GHF, NEO-UHF,
NEO-RHF, and NEO-MHEF (i.e., RHF for closed-shell elec-
trons and UHF for high-spin protons) have been defined. More-
over, the multicomponent SCF framework allows the potential
for electronic, protonic, and electron-proton vibronic instabili-
ties. The stability matrices for NEO-HF and NEO-DFT are the
same as those found in NEO-TDHF and NEO-TDDFT, but
NEO-TDHF and NEO-TDDFT have non-identity metrics in
their working equations. An imaginary eigenvalue solution for
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NEO-TDHF or NEO-TDDFT indicates that there must be at
least one negative eigenvalue in the stability matrix. However, a
negative eigenvalue in the stability matrix does not necessarily
indicate an imaginary eigenvalue solution of the NEO-TDHF
or NEO-TDDFT working equation. Thus, a negative eigen-
value of the stability matrix is a necessary but not sufficient
condition for the corresponding NEO-TDHF or NEO-TDDFT
working equation to have an imaginary eigenvalue solution.

We have found and characterized different types of SCF
solutions that are stationary points in orbital space but are
higher in energy than the presumed global minimum. For
example, NEO-DFT calculations for the FHF~ and HCN
molecules revealed instabilities corresponding to saddle points
in orbital space. In particular, we found SCF solutions for
which the eigenvalue of the stability matrix was negative but
the eigenvalue solution of the NEO-TDDFT working equation
was real, as well as the more typical unstable SCF solutions
for which the eigenvalue solution of the NEO-TDDFT working
equation was imaginary. In addition, NEO-DFT calculations
using a ASCF procedure for the HCN molecule illustrated the
possibility of a local minimum in orbital space, correspond-
ing to the HNC molecule in this case. NEO-DFT calculations
using this ASCF procedure for 2-cyanomalonaldehyde illus-
trated an analogous situation for two different proton transfer
isomers.

This type of stability analysis is a useful tool for charac-
terizing the nature of an SCF solution in orbital space. When
instabilities are found, this analysis will also be helpful in the
search for lower-energy solutions, following the same proce-
dure as in electronic structure theory.”*?* In the NEO frame-
work, some of the stationary points corresponding to minima
or saddle points in nuclear coordinate space in conventional
electronic structure calculations may be converted to station-
ary points in orbital space. This analysis will be particularly
interesting when the stationary points in nuclear coordinate
space are distinguished by differences in the positions of the
hydrogen nuclei, as illustrated by the HCN and HNC calcula-
tions described herein. Another example is a proton transfer
system that exhibits two minima in nuclear coordinate space
associated with the proton bound to the proton donor or accep-
tor, as illustrated by the 2-cyanomalonaldehyde system studied
herein. These types of stationary points may also be stationary
points in orbital space for NEO calculations and could corre-
spond to either saddle points or minima in orbital space. The
theory described herein will enable a detailed analysis of the
topology of orbital space in NEO calculations and a compari-
son to the topology of nuclear coordinate space in conventional
electronic structure calculations.

SUPPLEMENTARY MATERIAL

See supplementary material for the complete derivation
of the stability analysis for NEO-HF and NEO-DFT, as well
as the detailed formulation of internal and external instabil-
ities for theories with different spatial and spin constraints.
Coordinates for 2-cyanomalonaldehyde and excitation ener-
gies calculated with NEO-TDDFT for each localized solution
with comparison to proton vibrational energy level splittings
obtained from the grid-based approach are also included.
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